
12/14/2015
PRONUNCIATION: apparently the official pronunciation is "My S Q L", not "My Sequel".

WARNING: some IDIOT had the idea to name a folder "C:\Program Files (x86)\MySQL
\MySQL Fabric 1.5 & MySQL Utilities 1.5\Doctrine extensions for PHP\", so every time you
do something like "PATH %PATH%;" on Windows, it will try executing MySQL and say that it
isn't found. I just removed this from my PATH entirely (it was there twice for some reason),
but I suppose you could also just add quotes.

○

On Linux, you install it with "sudo apt-get install mysql-server".○

After installing on Windows, add "C:\Program Files\MySQL\MySQL Server 5.7\bin\" to the PATH
so that you get access to mysql.exe.

•

Then type in your password.○

mysql -u root -p•

CREATE DATABASE test_db;○

Make a new database•

From scratch: CREATE TABLE hardware_unlock_history(user_id INT);○

SHOW CREATE TABLE hardware_unlock_history;

You'll get two columns as a result: one has the name of the table, and the other has
the SQL statement used to create that table. You can just copy/paste the SQL into
another database.

From an existing table:○

Create a table•

SHOW DATABASES;○

You can show it with•

SELECT @@version;○

To find the version of MySQL that you're using (reference)•

(see the note below about using "NOW()")

SELECT * FROM users WHERE last_login_date > UTC_TIMESTAMP() - INTERVAL 1 DAY;○

Select relative dates•

SELECT journal FROM replays INTO OUTFILE ´journal.txt´○

Select into a file:•

USE test_db;○

Use the database•

SHOW tables;○

Show tables in the database:•

CREATE SCHEMA IF NOT EXISTS test_db;○

Make a new schema•

DESCRIBE table_name;○

To find the schema of a table:•

SELECT 1 FROM users WHERE id = 5;○

Note: the result will always be 1 if the row exists○

Check the existence of a row•

SELECT id, name FROM users WHERE name IN ('Adam', 'Adam2');○

Select a bunch of rows at once•

Note that this sorts by absolute value difference the way I have it written, so the

SELECT id, skill FROM users ORDER BY ABS(skill - 500) ASC LIMIT 10;○

Get rows similar in value to another row (reference)•

Setup/basic usage:

MySQL
Monday, December 14, 2015 9:38 PM

 Databases Page 1

https://geeksww.com/tutorials/database_management_systems/mysql/tips_and_tricks/how_to_check_mysql_version_number.php
http://stackoverflow.com/questions/6186962/sql-query-to-show-nearest-date

Note that this sorts by absolute value difference the way I have it written, so the
resulting table will look like this:

+-----+--------+
| id | skill |
+-----+--------+
| 500 | 500.00 | <-- difference of 0 (i.e. best result if comparing skills for
matchmaking)
| 499 | 499.00 | <-- diff of 1
| 501 | 501.00 |
| 498 | 498.00 | <-- diff of 2
| 502 | 502.00 |
| 497 | 497.00 | <-- diff of 3
503	503.00
496	496.00
504	504.00
495	495.00
+-----+--------+

Use TEXT instead of VARCHAR unless you want to limit the size of the data.•

CREATE USER 'TomAto'@'localhost' IDENTIFIED BY 'password';

The "@localhost" signifies the connecting machine, meaning I would only be able to
connect while on the same machine as the database. If I tried connecting remotely, it
wouldn't work. I could specify "@%" there so that I could connect from anywhere.

Keep in mind, in this command:○

GRANT ALL PRIVILEGES ON test_db.* TO 'TomAto'@'localhost' IDENTIFIED BY
'password';

Also, you don't necessarily have to run this specific command in order to create a user. The
"GRANT" command will create the user if it doesn't exist

○

In general, do not use root. Make a different user for each layer of access. Users belong to all of
MySQL and they need to be added to schemas.

•

use mysql;○

select User from user;○

To list all users, do this:•

GRANT ALL PRIVILEGES ON test_db.* TO 'TomAto'@'localhost';○

This grants TomAto access to all tables in test_db.

After making a user, you need to give them access.•

Prefer DATETIME over DATE.•

ALTER TABLE Orders ADD CONSTRAINT fk_PerOrders FOREIGN KEY (P_Id) REFERENCES
Persons (P_Id)

○

EveryJuan: @Adam13531, Here is another gotcha, we actually don't use any foreign keys
because we don't actually ever drop data, we have another field as a boolean which
determines if it was deleted, we use it for archiving, then we do all the foreign key
semantics in node

○

In order for foreign keys to work, you first need to have the table in which the column is a primary
key, so you MAY want to first create all your tables then prepare a script for the creation of
foreign keys.

•

Serializing data, e.g. an inventory, and storing it in a column can be a good idea if you don't need
to query the data. It can be fine to store as JSON in cases like that.

•

The JSON functions in MySQL are not really supposed to be used in production. I think it's just for
obtaining NoSQL functionality from a SQL database. I.e. if you find yourself using these functions,
you should probably format your data into proper relational tables.

•

MySQL Workbench is great for viewing/editing quickly without having to type in queries manually
(which can be a pain on Windows when there's no autocomplete in CMD). To view tables quickly,

•

 Databases Page 2

To null out a column, right-click without having given the input the focus and you'll get a
menu like this

○

(which can be a pain on Windows when there's no autocomplete in CMD). To view tables quickly,
use the Schemas view, choose <Your Database Name> --> Tables --> hover over any table and click
the grid icon on the right. Then, to make edits, simply change any fields you want and click the
Apply button at the lower right of the results pane. If you don't want confirmations every time,
you can change the setting here: "Edit->preferences->SQL Queries: Confirm Data changes"

Auto-updating timestamps (reference)

created_at•
updated_at•

I've gotten suggestions from people that every single row in a database should have two values:

Both of these can be initialized by default, and updated_at can be updated automatically by following
the notes at the reference link.

Math.min and Math.max (reference)

6
select GREATEST(5,3,6,2);

These are just called GREATEST and LEAST and seem to take any number of arguments.

COALESCE (i.e. default values when null) (reference)
This returns the first non-null value in a list, so you can do something like this:

UPDATE users SET rating = COALESCE(rating, 0) + 5;

Suppose you have a table that has a "rating" column, and this can be null. You want to update the
"rating" column to add 5. You can use this query:

I ran into a case where I wanted to UPSERT, and when running the INSERT side of things, set the
value to "newValue", and in UPDATE, set it to the LEAST of the existing and new values. Here's
how I did it:

 Databases Page 3

https://dev.mysql.com/doc/refman/5.7/en/timestamp-initialization.html
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_greatest
https://dev.mysql.com/doc/refman/5.7/en/comparison-operators.html#function_coalesce

UPDATE users set rating = LEAST(COALESCE(rating, newValue), newValue);
how I did it:

JSON (Official reference, common usage reference)

CREATE TABLE json_test(numbers JSON);
INSERT INTO json_test VALUES (JSON_ARRAY(1, 2, 3));
INSERT INTO json_test VALUES ('[1, 2]');

"JSON" is the type just like how "INT" is a type. Simple usage:

Note: in Knex, when inserting array data into a JSON column, call "JSON.stringify()" on it first.

Views
A view is like a virtual table.

Here's an example that IAMABananaAMAA sent for protecting against leaking private info while
streaming by making a view of "users" that only allows selecting ID and name:

 # Assume `botland`.`users` has: `id`, `username`, `password`, `email`
(and password/email are unencrypted, identifiable information)
 CREATE USER 'remote'@'%' IDENTIFIED BY 'remote'; # Create a new account
with your specifications (local/remote/etc)
 CREATE VIEW protected_users AS SELECT id, username FROM users; # Create a
new view (view == table copy with specified columns). You can do anything as
your SELECT here, so JOINing, WHERE, etc
 GRANT SELECT ON botland.protected_users TO 'remote'@'%'; # Grant
permissions to your new account
 # Now you can pretend `protected_users` is a table that only has access
to `id` and `username`. So hypothetically if you do get breached, the account
wouldn't have access to the `password` or `email` columns anyways

 From <https://bpaste.net/raw/84a84df5af4f>

Outputting a SQL command directly to a file (reference)
mysql -user user -pass pass -e"COMMAND TO RUN;" > file.txt

mysql -D botland -u root --password=password --default-character-set=utf8mb4 -e"SELECT name
from users;" > a.txt

For example:

Global variables

SHOW GLOBAL VARIABLES LIKE 'innodb_%prefix%';
To see the current value of a particular variable:

Collations and charsets (reference)
Character sets determine which characters are valid in your database (e.g. UTF8 vs. UTF8MB4), and
collations are just a way of comparing them (e.g. for sorting).

mysql> SHOW VARIABLES LIKE '%character_set%';
+--------------------------+---+

There's a character set for a database and also one for a connection. For example, if your database is
utf8mb4 and you have emojis stored somewhere but your connection is, say, cp850, you will see "???":

 Databases Page 4

https://dev.mysql.com/doc/refman/5.7/en/json.html
https://www.sitepoint.com/use-json-data-fields-mysql-databases/
https://bpaste.net/raw/84a84df5af4f
https://stackoverflow.com/questions/21253704/how-to-save-mysql-query-output-to-excel-or-txt-file/21253800#21253800
https://dev.mysql.com/doc/refman/5.7/en/charset-general.html

+--------------------------+---+
| Variable_name | Value |
+--------------------------+---+
character_set_client	cp850
character_set_connection	cp850
character_set_database	utf8mb4
character_set_filesystem	binary
character_set_results	cp850
character_set_server	utf8
character_set_system	utf8
character_sets_dir	C:\Program Files\MySQL\MySQL Server 5.7\share\charsets\
+--------------------------+---+

mysql> select name from scripts;
+------+
| name |
+------+
| ???? |
+------+

mysql> charset utf8mb4
Charset changed
mysql> select name from scripts;
+------------------+
| name |
+------------------+

| |
+------------------+

mysql -D mydb -u user --password=password --default-character-set=utf8mb4

The above only changes your charset for that particular connection. You can specify this at startup
with "--default-character-set":

Note that I still cannot figure out how to get MySQL Workbench to display this correctly. It doesn't
work with Chinese characters either, which makes me think it's just a mostly-ASCII Windows
control that's being used or something.

Viewing current character set or collations

SELECT @@character_set_database, @@collation_database;
"ci" === "case insensitive", e.g. utf8_general_ci

Database level:

SHOW TABLE STATUS from botland;
Table-level collations:

SHOW FULL COLUMNS FROM users;
Column-level collations:

Choosing a character set

DEFAULT CHARACTER SET utf8mb4
DEFAULT COLLATE utf8mb4_unicode_ci

This allows for up to 4 bytes for unicode characters so that you can support something like emojis.

The future of character sets and collations is apparently this:

 Databases Page 5

12:22 Kfirba2: @Adam13531 1 IMPORTANT thing to note here is that your INDEXED
columns under utf8mb4 charset CAN NOT exceed 191 characters UNLESS you enable
innodb_large_prefix
12:27 syntonic8: I had an issue with this too. I upgraded MySQL and it turned this flag on. If
you're using a new(est) version I believe it's on by default
12:27 syntonic8: Yeah version >= 5.7.7 is on by default

SHOW GLOBAL VARIABLES LIKE 'innodb_%prefix%';
To check if it's on, you can do this:

This allows for up to 4 bytes for unicode characters so that you can support something like emojis.
For all "normal" characters, it will still take the usual 3 bytes.

CREATE DATABASE IF NOT EXISTS test_collation DEFAULT CHARACTER SET utf8mb4
DEFAULT COLLATE utf8mb4_unicode_ci;

To create a database with this, use the following command:

I did a bunch of tests to see what would happen when you change character sets from utf8 to utf8mb4,
and I couldn't find any errors. It seems that VARCHAR(X) will always be able to store X characters
regardless of changing character sets. Here's some test SQL, but keep in mind that you can't just test all
of this in CMD Prompt because it shows "?" in the database.

CREATE DATABASE IF NOT EXISTS test_collation DEFAULT CHARACTER SET utf8mb4 DEFAULT
COLLATE utf8mb4_unicode_ci;
USE test_collation;
CREATE TABLE test_varchar(str VARCHAR(255));
DESCRIBE test_varchar;

INSERT INTO test_varchar VALUES ('

 ');
ALTER TABLE test_varchar CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_ci;

CREATE DATABASE IF NOT EXISTS test_collation4 DEFAULT CHARACTER SET utf8 DEFAULT
COLLATE utf8_general_ci;

If you wanted to create the database as UTF8 first, you could do this:

Bottom line: none of this makes any sense and I'm probably just testing this wrong thanks to
charset-connection.

Note that VARCHAR is still telling you the number of characters you can store, not bytes, and that
by default, just specifying "VARCHAR" alone will be 191 characters in utf8mb.

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-
length fields, which can be stored off-page. For example, a CHAR(255) column can exceed
768 bytes if the maximum byte length of the character set is greater than 3, as it is

Looked into more information about this (reference).

Based on what Chrizzmeister said, if you have a table with character set utf8 and a column with
VARCHAR(255), you'll be able to save 255 utf8 characters (which makes sense). However, if you change
the character set to utf8mb4, then that same column can only fit at most 191 characters since they can
take up to 4 bytes (because the maximum key length if 767 bytes, so that allows 255 3-byte characters
or 191 4-byte characters).

 Databases Page 6

https://dev.mysql.com/doc/refman/5.7/en/charset-connection.html
https://dev.mysql.com/doc/refman/5.7/en/char.html

768 bytes if the maximum byte length of the character set is greater than 3, as it is
with utf8mb4.

NOW()
"NOW()" will return the current timestamp in the server's timezone, but you likely shouldn't store
timezone-based data in the database. For example, in Bot Land, I store the creation_date of users in
UTC. I am in PST/PDT which is 8 or 9 hours behind UTC, so if I create a user and run "select * from users
where creation_date < NOW()" then I won't get the new user in the results.

Instead, either use UTC_TIMESTAMP() or call "SET time_zone = timezone;", which will change NOW(),
CURTIME(), etc. but won't change DATE, TIME, etc.

Make sure you have super privilege (e.g. log in as root)•

SELECT @@global.time_zone;○

If you want to check your current offset:•

SET GLOBAL time_zone = '+00:00';○

Change the timezone to UTC:•

Restart any sessions you have (e.g. command-line, Metabase, MySQL Workbench)•

Full instructions on how to set timezone:

HiDeoo: Adam13531 On your prod server if you don't want to use the query to set the timezone,
here's the config option to set it in my.cnf https://dev.mysql.com/doc/refman/5.5/en/server-
system-variables.html#sysvar_time_zone (you can even set it as a CLI argument with --default-
time-zone)

Alternatively, if you don't want to set the timezone globally, you can do so just for the session or via
my.cnf:

sudo apt-get install -y mysql-server○

You have to manually type a database root password in the installation.○

Install•

sudo vim /etc/mysql/my.cnf○

Find "bind-address" and change it to "0.0.0.0".○

Configure MySQL to be accessible on all addresses•

sudo service mysql restart○

Restart MySQL service•

CREATE USER 'TomAto'@'%' IDENTIFIED BY 'password';○

GRANT ALL PRIVILEGES ON test_db.* TO 'TomAto'@'localhost';○

If you haven't created a user, then create one. Note: the '%' lets you access the database from any
host.

•

GRANT ALL PRIVILEGES ON test_db.* TO 'TomAto'@'localhost' IDENTIFIED BY
'password';

Note: this flushes privileges on its own.

Note: without typing "IDENTIFIED BY", you'll have no password set, but only on
whichever host you specified. MySQL lets you set up users/passwords per-host, so you
could have a weak password when on localhost and a strong password outside of it if
you wanted.

Manual, easy way:○

mysql -u root -p

use mysql;

UPDATE user SET host='%' WHERE user='TomAto' AND host='192.168.1.17';

Manual, hard way:○

If you have created a user, then you need to make sure the host is set correctly.•

Installation on Linux

 Databases Page 7

https://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_time_zone

UPDATE user SET host='%' WHERE user='TomAto' AND host='192.168.1.17';

FLUSH privileges;

Without flushing privileges, you'll get an error message about: Host '192.168.1.17' is
not allowed to connect to this MySQL server

Executing arbitrary commands from the command line
Just use "-e" and surround your command in quotation marks.

mysql -D botland -u root --password=password -e "DROP DATABASE IF EXISTS %localDbName%;"
mysql -D botland -u root --password=password -e "CREATE DATABASE %localDbName%;"
mysql -D botland -u root --password=password -e "GRANT ALL PRIVILEGES ON %localDbName%.* TO
'Adam'@'localhost';"

Saving/restoring a MySQL database (reference)

Note: mysqldump is needed to back up the database and I don't know whether it comes from
mysql-server or mysql-client.

•

Backup: mysqldump -u root -p[root_password] [database_name] > dumpfilename.sql•

DROP DATABASE [database_name];

CREATE DATABASE [database_name];

Note: you may find it better to do this to ensure you don't have any tables that shouldn't be
there:

○

Restore: mysql -u root -p[root_password] [database_name] < dumpfilename.sql•

(keywords: export / import)

Example with Bot Land:
On Overseer: probably "delete from replays;" so that we don't get a bunch of journals that we don't care
about
On Overseer: mysqldump -u root -h db.bot.land -p botland > dumpfilename.sql
On local machine: scp -i D:\Code\JavaScript\learning\aws\Firstkeypair.pem admin@
50.112.22.133:/home/admin/dumpfilename.sql ./
On local MySQL: CREATE DATABASE botland2;
On local command line: mysql -u root --password=password botland2 < dumpfilename.sql

Saving/restoring a single MySQL table
I did this using MySQL Workbench.

Click the "Export recordset to an external file" button•

Export to a ".sql" file•

Saving

mysql -u root --password=password -D botland < file.sql•
Restoring

Go look at the PostgreSQL note. If anything differs, I will list it here.•

Basic commands

 Databases Page 8

http://www.thegeekstuff.com/2008/09/backup-and-restore-mysql-database-using-mysqldump/

Go look at the PostgreSQL note. If anything differs, I will list it here.•
Drop/delete a user: DROP USER 'Adam'@'localhost';•

SELECT * FROM user\G○

Selecting when tables have tons of columns - just replace the semicolon at the end of a SELECT
statement with "\G".

•

SELECT concat(name, ' (', id, ')') AS full_user FROM users;○

Selecting columns concatenated together: use CONCAT•

ALTER TABLE users ADD COLUMN num_unopened_salvage INT UNSIGNED NOT NULL
DEFAULT 5;

ALTER TABLE users ADD COLUMN copy_of_last_attacked_defense text DEFAULT
NULL;

Add a column:○

ALTER TABLE mytable DROP FOREIGN KEY mytable_ibfk_1 ;

You may need to remove any foreign key constraints on this first (the name of
the foreign key can be found via "SHOW CREATE TABLE users") (reference)

□
ALTER TABLE users DROP COLUMN testeroni;

Remove a column○

ALTER TABLE defense_copies MODIFY journal LONGTEXT;

Change type of a column○

Note: the type, "not null" (if you want that), and the default (if you want one)
are all required since these properties aren't merged! I.e. there's no way to just
rename a column; you have to specify everything about that column.

□

ALTER TABLE `xyz` CHANGE `oldname` `newname` INT UNSIGNED NOT NULL DEFAULT
0;

Change name of column (keyword: "rename") (reference)○

DROP TABLE users;

Drop the table○

ALTER TABLE Tablename CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4
_bin;

Changing character set and collation○

Altering a table:•

SELECT matches.attacker_id,
 matches.start_time,
 attacker.name AS attacker,
 defender.name AS defender
FROM `ongoing_matches`
INNER JOIN `matches` ON `ongoing_matches`.`match_id` = `matches`.`id`
INNER JOIN `users` AS attacker ON `matches`.`attacker_id` = `attacker`.`id`
INNER JOIN `users` AS defender ON `matches`.`defender_id` = `defender`.`id`;

JOIN syntax•

UPDATE users SET serialized_defense = REPLACE(serialized_defense, 'towers', 'chips')○

Replacing substring/text in the database. For example, I had to replace the word "towers" with
"chips" in a JSON blob, so I ran this query:

•

SELECT * FROM users WHERE name LIKE 'startswith%';○

SELECT * FROM users WHERE name LIKE '%endswith';○

SELECT * FROM users WHERE name LIKE '%substring%';○

^You need to write a backslash four times to have it resolve to a single backslash
(reference)

SELECT * FROM users WHERE name LIKE '%contains_backslash__%';○

Searching based on substrings•

SELECT COUNT(*) FROM users;○

Getting the number of rows in a table•

HAVING•

 Databases Page 9

https://stackoverflow.com/a/8482400
http://stackoverflow.com/questions/4002340/error-renaming-a-column-in-mysql
https://stackoverflow.com/questions/14926386/how-to-search-for-slash-in-mysql-and-why-escaping-not-required-for-wher

This is basically a WHERE clause that works after the group has done its job.○

SELECT users.name,
 count(*) AS cnt
FROM `users`
INNER JOIN `bot_bays` ON `bot_bays`.`user_id` = `users`.`id`
GROUP BY users.id HAVING cnt > 2
ORDER BY cnt DESC;

Example○

HAVING•

SET @amount = 5; SELECT * FROM users WHERE money > @amount;○

You can use variables to make some queries easier:•

This query finds all users who have the same name:
SELECT id,
 name,
 COUNT(name) AS the_count
FROM users
GROUP BY name HAVING the_count > 1;

Find non-distinct/non-unique rows in a database•

Case statements (reference)
If you ever have something like a "status" column that's saved as an integer but represents something
like "offline"/"online", you could use a "case" statement:

SELECT user_id,
 CASE
 WHEN status = 0 THEN 'offline'
 WHEN status = 1 THEN 'online'
 ELSE 'unrecognized'
 END AS status_name
FROM users;

SELECT SUBSTRING_INDEX('offline,online', ',', status) from users;
Alternatively, if you really just have a couple of values, SUBSTRING_INDEX may be better:

Truncating vs. deleting

id
journal

replays

id
replay_id (where this is set up with CONSTRAINT `matches_replay_id_foreign` FOREIGN KEY
(`replay_id`) REFERENCES `replays` (`id`) ON DELETE SET NULL)

matches

Suppose you have two tables:

ERROR 1701 (42000): Cannot truncate a table referenced in a foreign key constraint (`botland`.
`matches`, CONSTRAINT `matches_replay_id_foreign` FOREIGN KEY (`replay_id`) REFERENCES
`botland`.`replays` (`id`))

These are set up so that deleting a replay will null out the "replay_id" in "matches". However, if you try
truncating the entire "replays" table, then you'll get this error:

[bad] Disable foreign key constraint checks or delete that particular foreign key constraint,
perform your truncation, then reinitialize the FK. This is bad because you will lose data integrity

1.
There are two ways you can deal with this (where one is clearly better):

 Databases Page 10

http://stackoverflow.com/questions/15745128/mysql-case-if-then

perform your truncation, then reinitialize the FK. This is bad because you will lose data integrity
while the FKs are absent. For example, if you did that with the tables above, then the replay_id in
"matches" would never get nulled out.
[good] "DELETE FROM replays;" - this is good because it abides by all of your constraints and
maintains the next primary key value.

2.

Procedures (reference)
Simple procedure with one argument:

DELIMITER //
CREATE PROCEDURE ̀ getActiveUsers` (IN numDays INT)
BEGIN
SELECT name,
 last_login_date
FROM users
WHERE last_login_date > NOW() - INTERVAL numDays DAY;
END //
DELIMITER ;

Note: the DELIMITER statements change what string is used at the end of a line from a semicolon;
you need this when you use multiple SQL statements in a procedure so that the parser doesn't
end at the first semicolon it sees (which would be after the "WHERE" clause above). This is a
feature of the MySQL client, not the server as far as I understand, so this doesn't work from
something like knex or my-cli.

CALL getActiveUsers(2);
Calling the procedure:

To update a procedure, I think you have to just drop it first and then update it.
DROP procedure IF EXISTS `getActiveUsers`;

Updating the procedure:

Primary keys
Don't use IP addresses as primary keys! Your primary keys should almost always be incrementing
integers or UUIDs.

Note that composite indexes can be used as long as you're selecting based on the first N columns,
where N is any number up to the number of columns used in the composite index. E.g. if you have
an index on "user_id" and then "item_id" and search just using "user_id", it will use the index.

You can have a primary key that consists of multiple other keys (AKA a primary composite key or primary
compound key) (reference). If you do this, you don't necessarily need an autoincrementing "id" field for
your table, but it can be helpful for manually deleting entries. If you do decide to have an
autoincrementing "id" field, then you very likely shouldn't index it since that will end up taking much
more space than just the 4-8 bytes that the integer itself needs.

According to this StackOverflow post, primary keys are always indexed.

Misc notes
Pagination

SELECT ...
TL;DR: don't use OFFSET. Prefer something like this:

Read this: http://use-the-index-luke.com/no-offset

 Databases Page 11

https://dev.mysql.com/doc/connector-net/en/connector-net-tutorials-stored-procedures.html
https://dev.mysql.com/doc/refman/8.0/en/multiple-column-indexes.html
http://stackoverflow.com/a/1071199
http://use-the-index-luke.com/no-offset

SELECT ...
 FROM ...
WHERE ...

 AND id < ?last_seen_id
ORDER BY id DESC
FETCH FIRST 10 ROWS ONLY

Transactions, locks, and isolation
Isolation Level - https://dev.mysql.com/doc/refman/5.5/en/set-transaction.html - note, you don't need
to change this by default according to GsarGaming: "No you dont [need to modify the transaction
isolation level]. Leave it at defaut. It is by default ACID." EveryJuan supports this by saying "The default
isolation level is REPEATABLE READ, which requires a transaction commit for the lock to be broken, so
you were right overall".

SELECT … FOR UPDATE (reference)

SELECT FOR UPDATE * FROM users WHERE id = 1;○

<delay of 50 hours>○

<do something with the user>○

<commit or rollback transaction>○

Transaction 1:

UPDATE users SET inventory = 'blah' WHERE id = 1;○

<commit or rollback>○

Transaction 2 (which runs AFTER the "SELECT" above but BEFORE the delay is finished)

Transaction 2 will wait for 50 hours before completing, the only caveat being that a timeout will
likely stop it from finishing the whole 50-hour delay. The reason Transaction 2 waits is because
there is no deadlock, otherwise it would error out immediately and need to be rerun at some
point.

Furthermore, let's say you issued a plain old UPDATE outside of a transaction, e.g. "UPDATE users
SET inventory = 'blah' WHERE id = 1;". That would respect the lock and wait until Transaction 1 is
finished.

However, a "SELECT * FROM USERS;" or "SELECT * FROM USERS WHERE id = 1;" would work
immediately. These are the consistent reads that the documentation refers to when it says
"Consistent reads ignore any locks set on the records that exist in the read view.".

Do note, "SELECT * FROM USERS WHERE id = 1 LOCK IN SHARE MODE;" would wait for the lock to
be freed.

In short, this will lock the row so that nothing else can modify it. For more details, read the reference.
What this means is that suppose you have this flow:

It is ONLY for transactions. It is not an error to put "SELECT * FROM users FOR UPDATE;", but it
doesn't do anything.

•
Other notes about SELECT … FOR UPDATE:

SELECT … LOCK IN SHARE MODE

Read 'money' from the 'users' table (use LOCK IN SHARE MODE)•
Read 'inventory_size_remaining' from the 'items' table (use LOCK IN SHARE MODE)•

As mentioned above, this will try to acquire a lock that prevents updates (but allows reads still). I don't
think I've run into a scenario where I've organically wanted to use this, but I imagine the scenario would
be something like this contrived transaction:

This would let you know if you have enough money and inventory space to buy an item, but it

 Databases Page 12

https://dev.mysql.com/doc/refman/5.5/en/set-transaction.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html

This would let you know if you have enough money and inventory space to buy an item, but it
wouldn't actually update anything. Note: when you actually go to buy an item, it would need to
lock the appropriate rows FOR UPDATE.

Locks (reference)
Locks are acquired explicitly with "SELECT" when using "SELECT … FOR UPDATE" or "SELECT … LOCK IN
SHARE MODE". However, they're implicitly obtained in "UPDATE … WHERE …" and "DELETE FROM …
WHERE …" statements. This means that you're actually getting a lock if you do this:

START TRANSACTION;
INSERT INTO users(name) VALUES('Adam'); # Lock is obtained
INSERT INTO items(name) VALUES('Starter Sword'); # Lock is obtained
COMMIT;

However, I think that it doesn't really matter whether you got a lock or not above since it's a
transaction, so it's treated as an atomic unit.

Table-level locks (reference)

LOCK TABLES users WRITE;
-- Do stuff here that will now prevent other queries from being able to write to "users"
UNLOCK TABLES;

If you want to lock an entire table, you can do something like this:

LOCK TABLES users WRITE, accounts READ;
If locking multiple tables, make sure to do so in a single command:

Note that this level of lock can affect transactions! I wrote a note about this here, and the official docs
talk about it here.

Deadlocks (reference - actually very helpful)
Deadlocks can occur even from just inserting/deleting a single row (because of how they work
underneath with obtaining locks). They are not fatal, and the documentation suggests that the
application retry the transaction.

I am going to try to always acquire locks in the same order, that way I shouldn't run into a deadlock.

Subqueries

INSERT INTO users (name, age, nickname)
SELECT name,
 18,
 name
FROM other_users;

Using data from one table to populate another

Note: you can specify any immediate values you'd like in the subquery.

INSERT INTO users (name, age)
SELECT name,
 age
FROM users
WHERE id = 5;

You can use this to duplicate rows in a table easily:

An alternative to subqueries

 Databases Page 13

http://dev.mysql.com/doc/refman/5.5/en/innodb-locks-set.html
https://dev.mysql.com/doc/refman/5.7/en/lock-tables.html
onenote:#knex§ion-id={21CE825A-82FB-4DEB-97F7-B37260CC52CA}&page-id={43435F41-32FE-4A67-8D7C-5755C84C6600}&object-id={0895A082-DF5C-4300-AF20-CD9EC5491B24}&B&base-path=https://d.docs.live.net/8d59514b5dbe9460/Documents/Knowledge/Databases.one
https://dev.mysql.com/doc/refman/8.0/en/lock-tables-and-transactions.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-deadlocks.html

An alternative to subqueries

SELECT
 computer_level,
 SUM(outcome = 2) AS def_wins,
 SUM(outcome = 0) AS def_losses,
 (SUM(outcome = 2) / SUM(outcome = 0)) AS def_win_ratio
FROM
 matches
GROUP BY computer_level;

This can be a helpful way to avoid using subqueries. For example, here I want to select the number of
times outcome is 2 and divide it by the number of times outcome was 2.

Indexes
Basics
There's no real need to use an index until you've got thousands of entries (e.g. 10k+). Remember that
there's no guarantee that the storage engine uses your index (because it can determine that sequential
searching may be faster).

How to use them (reference)
CREATE TABLE users (name TEXT, INDEX(name(5)));

Note: the number in parentheses indicates how long of a prefix you're going to index on. It can be higher
or lower than the number of characters in each individual name in the table. The lower it is, the less
hard drive space the index will use, but the less performant it will be.

Suppose you created the index with length 1 and then added 'Adam' to your table 3 times. You could
run "EXPLAIN" on your query as below:

mysql> EXPLAIN SELECT * FROM users WHERE name = 'adam';

id select_t
ype

table partitio
ns

type possibl
e_keys

key key_len red rows filtered Extra

1 SIMPLE users NULL ref name name 6 const 3 100.00 Using
where

For information on how to interpret the above, look at this reference.

SELECT *
FROM matches
IGNORE INDEX (matches_defender_and_replay_id_index)
WHERE defender_id = 2
 AND replay_id IS NOT NULL\G

Also, if you explicitly want to IGNORE a particular index, you can specify it just after the "SELECT"
but before the "WHERE" clause like this:

Troubleshooting
Password expired (or you just want to change your password)
"ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing this
statement."

SET PASSWORD FOR 'Adam'@'localhost' = PASSWORD('password');
Just set the password again using the root account:

Note that if this happens while you're on root, you can do this (reference):

 Databases Page 14

http://dev.mysql.com/doc/refman/5.7/en/column-indexes.html
https://dev.mysql.com/doc/refman/5.7/en/explain-extended.html
https://stackoverflow.com/a/33511149

SET PASSWORD = PASSWORD('password');
Note that if this happens while you're on root, you can do this (reference):

Warnings

Note: code 1003 is just the code for "EXPLAIN EXTENDED" (reference)

If you ever run a query and you see something like "1 row in set, 2 warnings (0.00 sec)", then do "SHOW
WARNINGS" to see the warnings.

 Databases Page 15

https://stackoverflow.com/a/33511149
https://forums.mysql.com/read.php?24,264873,264934#msg-264934

